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       Abstract. This is a report of the current status of the Hex-Tet algorithm as implemented in the CUBIT
toolset.  The Hex-Tet algorithm begins by generating a partial hex mesh using an advancing front
“Plastering” algorithm.  The boundary of any remaining void is optionally “cleaned-up” to improve its
shape and/or other properties.  The quad boundary is then converted to a triangular boundary by one of
three available methods.  Finally, the triangle-bounded void is filled with tetrahedra using the tet-generation
capabilities within CUBIT.  The result is a mixed-element mesh containing hexahedra, tetrahedra, and
optionally pyramids.  A set of test problems is described which is used to generate data concerning the
robustness and speed of the algorithm, as well as properties of the resulting meshes.
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Introduction

The desire within the finite element analysis community for an automated all-hexahedral mesh generation
algorithm is well documented.  At Sandia National Laboratories, one effort to provide this capability is the
plastering algorithm (Stephenson:1990, Canann:1992, Blacker:1993, Hipp:1994, Hipp:1995), a 3D extension of
the very successful Paving algorithm for all-quadrilateral surface meshes.  To date, the all-hexahedral algorithm
has proved intractable.  In recent years, attention was shifted to the “hex-tet” algorithm, which focuses on
creating a hex-dominant mesh by filling the volume with as many hexes as possible, and then filling the
remainder with tetrahedra (Dewhirst:1995).  Tuchinsky and Clark (Tuchinsky:1997) give an excellent paper on
past advancements on this algorithm at Sandia.  Our report documents very recent developments with the Hex-
Tet algorithm, concentrating on the commercialization of the algorithm for use within CUBIT, and on
documenting the current robustness of the algorithm and the properties of resulting hex-dominant meshes.  The
following portions of the paper will document recent additions to the algorithm to enhance robustness, and
describe a test suite of non-trivial problems used to evaluate the algorithm and the results obtained.

Adapting the Hex-Tet algorithm for CUBIT

Much recent work done on the Sandia Hex-Tet algorithm was conducted at Ford Motor Company
(Tuchinsky:1997) using Ford software, including the Ford tet-generator.  This latest plastering algorithm was



adapted for inclusion in the CUBIT system.  A quality tet-generation algorithm has been recently incorporated in
CUBIT, and these two were combined to provide an automated Hex-Tet algorithm.

To provide a transition from the quad-bounded void left by the hex-generator and the tri-bounded void needed
by the tet-generator, three options were provided.  The first option, labeled “Two” in the test data below, simply
splits the quads into two triangles along the shortest diagonal.  The second, labeled “Four” below, creates a
center point for each quad and divides the quad into four triangles. The last, called “Pyramid”, inserts  pyramid
elements between the hexes and tets, resulting in a fully conformal mesh containing three element types.

The pyramid generation algorithm used is essentially that described by Owen, Canann, and Saigal (Owen:1997),
with a few additions to handle the very complex void geometries created by the HexToVoid algorithm.  The
most significant of these additions involved the potential for warpage on the quad faces of the void boundary.
When a warped quad is divided into two triangles along the diagonal and the resultant triangle boundary is
tetrized, it is possible that both of the triangles of the original face may be owned by a single tetrahedron.  In this
case, we must find the edge of the tetrahedron which is not part of the original two triangles, and split all tets in
the model which share this edge.  We can then proceed with pyramid construction as normal.

For most analyses, an ideal mixed-element mesh would contain several layers of all-hex mesh near the boundary,
with the tets (and possible pyramids) isolated to relatively small areas in the interior.  To that end, special
attention was given to the hex generation algorithm to attempt to maximize the percent volume occupied by
hexes in the model, and to minimize the number of faces on the original meshing boundary which remain after
hex generation.

Void Cleanup

Some additional work was required to allow the Hex and Tet portions of the algorithm to work well together.  In
complex geometries, the void left by the Hex generator is often very complex, with a very high surface to volume
ratio, especially for relatively thin-section models (Figure 1).

Figure 1: Winblock Model and Void Remaining after Hex Generation

The term “pancake void” was coined to describe the shape of void often seen when two advancing hex fronts
would collide.  Because of the fixed point density on the surface in addition to the complex geometry, these
voids are very difficult for an automated tet-generator to fill with quality elements.  To improve both robustness
and tet quality, a void cleanup algorithm was devised to condition the void before tet generation.

The void cleanup algorithm attempts to improve the void by removing selected hex elements in such a way that
the resulting void has improved properties for mesh generation.  A distance tolerance was used to guarantee that
any  two non-adjacent quads on the void boundary would be separated by at least d, where d is some user-
settable distance.  This provides sufficient space for the tet generator to insert better elements.  Additional Hex
removal may also be performed given any of the following:

1. More than three faces of a single hex are on the void boundary.



2. An edge on the void boundary is connected to more than two faces on the void boundary.
3. The dihedral angle between any two faces on the void boundary is less than some

minimum threshold value (typically about 45 degrees) or greater than some maximum
value (typically about 315 degrees).

4. One of the interior angles of a boundary face is less than some minimum value (typically
45 degrees) or greater than some maximum value (typically 135 degrees).

Other criteria could also be used depending on the properties of the tet generation algorithm and on the desired
results.

Testing the Hex-Tet Algorithm

Although some testing had been conducted on both the hex generator and the tet generator,  a quantitive measure
of the robustness of the combined algorithm was needed.  To this end, a test suite of non-trivial problems was
assembled for testing and evaluation.  In all, seven models were chosen (see figures 2,3,8-11):

• Hook: This is a model of a real part, named for its general hook shaped appearance. The model contains several
small and irregular facets.

• Ugly: Named either for its appearance or its behavior during meshing, this is actually a subset of the Hook
model.

• Winblock:  A blocky but difficult part with many through holes of widely varying diameter.
• TDDH:  This model is best described as a soccer-ball shape with flat panels. It contains many angles between

120 and 150 degrees, which are very difficult for hexing algorithms to handle.
• Knee:  A model of an artificial knee joint.
• Throw:  A complex machined part, apparently part of a crankshaft assembly.

• Enterprise:  A model of the well-known Starship, circa 1964.

Figure 2: Hook Model, Low and High Resolutions

The models were chosen as examples of complex volumes for which current all-hex algorithms do not work well.
Each model was tested over as wide a range of interval sizes as possible (from a maximum of 11 sizes for the Ugly
model, to only two for the Enterprise).  In general, the coarse mesh limit was governed by the coarsest mesh the
current cubit surface meshing algorithms could produce for a given model with little or no human intervention.  In
general, the coarse meshes were  too coarse to capture all of the detail in the model.  The fine mesh limit was
generally determined by the available dynamic memory limits of the computer used for these tests.  Finer tests could
be run on larger machines, but the range of intervals used for the models seems sufficient to draw meaningful
conclusions on the capabilities of the Hex-Tet algorithm.



Figure 3: The Enterprise Model

Tests were performed for a total of 43 model/interval combinations with three transition methods for each.  The table
below summarizes the results for the test suite.

Hook Ugly Winblock Enterprise Knee TDDH Throw Totals
Surface Mesh
Success 9/9 11/11 2/5 2/2 5/6 6/6 4/4 39/43
Hexing
Success 9/9 11/11 2/2 2/2 2/5 6/6 3/4 35/39

Tet Success,
trans: Two 9/9 11/11 2/2 2/2 2/2 6/6 2/3 34/35
Tet Success,
trans: Four 8/9 10/11 0/2 0/2 0/2 5/6 2/3 25/36
Tet Success,
trans:
Pyramid

9/9 11/11 2/2 2/2 2/2 6/6 2/3 34/35

Figure 4: Results of Test Runs

Robustness

The success rate of the HexToVoid algorithm on a wide range of difficult models was surprising.  For the Hex
generation portion of the algorithm,  the success rate was 35/39, or 90%.  The failures were breakout problems,
which showed up three times on the Knee problem and once on the Throw model.

The success rate for tetrizing the remaining voids was dependent on the transition method used.  The success rate
using the two-triangle transition was  a very respectable 34/35 or 97%. This is excellent considering the very difficult
voids the tet generator is asked to fill. Using the four-triangle transition, the rate was 25/36, or 70%.  The large
difference in success is probably due to the fact two good triangles can be formed from a skewed quad, whereas the
four triangle transition on the same quad results in very thin triangles.  The pyramid transition actually uses the two-
triangle transition and tet generation, and then inserts the pyramid transition layer as a post-processing step.  The
success rate for the pyramid transition was identical to the two-transition at 97%.



For the models shown, the overall success rate for the Hex-Tet algorithm using the two-triangle  or pyramid
transition is 87%, while using the four-triangle transition results in 64% success for the tests performed.
Interestingly, the HexToVoid algorithm performed remarkably well for large interval sizes (very coarse meshes).

Algorithm Effectiveness and Predictability

In addition to robustness, the testing included metrics which might indicate whether the algorithm is behaving
sensibly.  For example, we would expect that as resolution is increased, the percentage of the volume filled with
hexes should increase, and the percentage of original boundary quads remaining after hex generation should
decrease. Three of the models (Hook, Ugly, and TDDH) had enough data points for meaningful graphs. The graph
for the Ugly model is shown below.  The summary indication is that for very coarse models, the graphs jump around
somewhat randomly.  When  the resolution becomes sufficient to accurately capture the details of the model, the
behaviors then become monotonic and predictable.  From this viewpoint, it appears that the hex generation portion of
the algorithm behaves correctly and predictably as mesh size is scaled.
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Figure 5: Algorithm Effectiveness For The Ugly Model

Algorithm Speed

Currently, the Hex-Tet algorithm is still very slow.  The Hex generator, which takes most of the time, has been
constructed for robustness, but as yet never modified for efficiency.    The table below summarizes the average speed
of the Hex and Tet generation portions of the algorithm, as well as overall speed.

Algorithm Elements per Second
Hex Generation 9.84
Tet Generation 221.84

Overall 61.40

Figure 6: Average Timing Statistics for 43 Test Models

Element Quality

Idea of what constitutes a model of acceptable quality varies greatly from discipline to discipline and from individual
to individual.  For the purposes of this study, we chose to use a normalized average element jacobian as a reasonable
indication of the quality of elements created. Of course, this does not mean the models would be acceptable for any
given analysis problem. The jacobian was calculated as an average of the jacobian  at each node,  and was then
normalized by dividing by the cube of the average edge length to give a normalized range of

-1.0 <= jacobian <= 1.0

As a computational minimum, all elements should have a jacobian greater than zero.  Both the hex and tet generators
currently prevent any element from being created which has a non-positive jacobian.  However, global smoothing,



which in general will improve the quality of elements, can sometimes also create negative jacobians.  The table
below shows the ranges of jacobians found for the test suite.  The absolute minimum and maximum reflect,
respectively, the lowest minimum and highest maximum found over all 43 models.

Parameter Hex Elements Tet Elements
Average Minimum Jacobian 0.306 0.062
Average Maximum Jacobian 0.983 0.655

Average Jacobian 0.843 0.330

Absolute Minimum Jacobian 0.007 0.001
Absolute Maximum Jacobian 1.000 0.710

Figure 7: Quality Metrics for The 43 Model Test Suite

The quality of hex elements generated overall was excellent, although there were isolated hexes in some models
which would not be acceptable.  The quality of the tet elements generated was not as good.  This is partly attributable
to the fact that the tet improvement algorithms planned for CUBIT (Joe:1995) have not yet been implemented.

Conclusions

The Hex-Tet algorithm implemented in CUBIT appears to be a useful addition to the CUBIT toolset.  The
algorithm handled a wide range of non-trivial models with robustness, producing meshes of acceptable quality in
most cases.

Although many of the models used to test the algorithm are large and complex, we do not recommend using the
Hex-Tet algorithm as a silver bullet to mesh an entire assembly with the push of a button.  Rather, it is a useful
tool to be used in the overall context of the CUBIT package, where models can be easily decomposed as
necessary, and the best algorithm for each volume or sub-volume can be invoked as necessary.  We do see it as
highly useful, however, for those geometries which cannot be decomposed or meshed using other current
algorithms, provided the intented solver can handle the resultant mixed element mesh.

Further work still needs to be done to improve the speed and efficiency of the hex generation portion of Hex-Tet
to make it a faster and easier tool to use.

Figure 8: Ugly Model, Low and High Resolutions



Figure 9: Winblock Model,  Low and High Resolutions

Figure 10: Knee Model, Low and High Resolutions

Figure 11: TDDH Model, Low and High Resolutions

Bibliography



Blacker, T. D. and Meyers, R. J., 1993, “Seams and Wedges in Plastering: A 3-D Hexahedral Mesh Generation
Algorithm.” , Engineering With Computers, Vol 9, pp. 83-93.

Canann, S. A., “Plastering: A New Approach to Automated, 3-D Hexahedral mesh Generation”, American
Institute of Aeronautics and Astronics, 1992.

Dewhirst, D. L., Vangavolu, S., and Wattrick, H., “The Combination of Hexahedral and Tetrahedral Meshing
Algorithms”, Proceedings, 4th International Meshing Roundtable, Sandia National Laboratories, October, 1995,
pp. 291-304.

Hipp, J. R. and Lober, R., “Plastering: All-Hexahedral Mesh Generation Through Connectivity Resolution”,
Proceedings 3rd International Meshing Roundtable, Oct. 24-25, 1994, Albuquerque, New Mexico.

Hipp, J. R. and Clark, B., “Plastering Algorithm and New Knife Embedding and Face Insertion
Implementation”, Proceedings 4th International Meshing Roundtable, Oct. 16-17, 1995, Albuquerque, New
Mexico.

Joe, B., “Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations”,
Siam Journal of Scientific Computing, Vol. 16, pp. 1292-1307, 1995.

Owen, S. J., Canann, S. A., and Sunil, S., “Pyramid Elements For Maintaining Tetrahedra to Hexahedra
Conformability”, Trends in Unstructured Mesh Generation, AMD Vol 220, ASME 1997, pp. 123-129.

Stephenson, M. B., Canann, S. B., and Blacker, T. D., “Plastering: a New Approach to Automated, 3-D
Hexahedral Mesh Generation - Progress Report 1”, Report SAND89-2192, Sandia National Laboratories,
Albuquerque, New Mexico, 1990.

Tuchinsky, P. M., and Clark, B. W., 1997, “The ‘Hex-Tet’ Hex-Dominant Automesher: An Interim Progress
Report” , Proceedings 6th International Meshing Roundtable, Sandia National Laboratories, October 1997, pp.
183-193.


