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ABSTRACT

This paper compares the accuracy of elastic and elastio-plastic solid continuum finite
element analyses modeled with either all hexagonal or all tetrahedral meshes.  Eigenvalues
of element stiffness matrices, linear static displacements and stresses, dynamic modal
frequencies, and plastic flow values in are computed and compared. Elements with both
linear and quadratic displacement functions are evaluated.  Linear incompressibility
conditions are also investigated.  A simple bar with a rectangular cross-section, fixed at
one end, is modeled and results are compared to known analytical solutions wherever
possible. The evaluation substantiates a strong preference for linear displacement
hexagonal finite elements when compared solely to linear tetrahedral finite elements.  The
use of quadratic displacement formulated finite elements significantly improve the
performance of the tetrahedral as well as the hexahedral elements.   The nonlinear elasto-
plastic comparison indicates that linear hexagonal elements may be superior to even
quadratic tetrahedrons when shear stress in dominant.  Results of this work may serve as a
guide in selecting appropriate finite element types to be used in three dimensional elastic
and elastic plastic analysis.



INTRODUCTION

Consideration of the convergence characteristics of two dimensional solutions of elastic
continuum problems, using both quadrilateral and triangular elements, has been covered in
previous studies and  some finite element textbooks[1,2].  Such studies conclude that  the
significant factors that effect convergence characteristics of finite element solutions
include the element's basic shape, element distortion, polynomial order of the element,
completeness of polynomial functions, integration techniques, and material
incompressibility. It is generally accepted that simplex triangular elements are inferior
when compared to bilinear quadrilaterals.  For example, statements such as “... for reasons
of better accuracy and efficiency, quadrilateral elements are preferred for two-dimensional
meshes and hexahedral elements for three-dimensional meshes.  This preference is clear in
structural analysis and seems to also hold for other engineering disciplines.”[2] However,
it is also generally accepted that triangular elements, with higher order displacement
assumptions, provide acceptable accuracy and convergence characteristics.  However,
mesh locking due to material incompressibility as reported by Hughes[3], is a serious
shortcoming of triangular elements.

The current focus for developing rapidly converging finite element procedures is to
incorporate h-p adaptive techniques.[4]  Of particular note for this study is an article by
Lo and Lee[5] which investigates the convergence of mixed element in h-p adaptive finite
element analysis.  A significant conclusion from this paper is, that by carefully controlling
quality and grading, quadrilateral elements provide an increase in efficiency in h-p
adaptivity over pure triangular elements.

A few studies have been published comparing the convergence characteristics of
hexahedral verse tetrahedral meshes. Cifuentes and Kalbag [6] conclude that the results
obtained with quadratic tetrahedral elements, compared to bilinear hexahedral elements,
were equivalent in terms of both accuracy and CPU time. Bussler and Ramesh [7] report
more accuracy using the same order hexahedral elements over tetrahedrons. Weingarten
[8] indicates that both quadratic tetrahedrons and hexahedrons were equivalent in
accuracy and efficiency and recommends using p method tetrahedrons to achieve desired
accuracy. No studies were found incorporating incompressibility or plasticity aspects
relating to the convergence of hexagonal and tetrahedral elements.

In this paper,  stiffness matrix eigenvalues of  a square geometrical volume, meshed with a
single hexahedron is compared to the same geometrical volume meshed with five
tetrahedrons.  Next, results of a linear elastic, fixed end bar, meshed with either all
hexahedrons or all tetrahedrons are compared.  Both bending and torsional results are
considered.  The computed vibration modes of the  fixed end bar problem are then
evaluated.  Finally, elasto-plastic calculations of the fixed end bar again meshed with both
types of elements are evaluated.



STIFFNESS MATRIX EIGENVALUES

The evaluation of the eigenvalues and eigenvectors of a stiffness matrix is important when
studying the convergence characteristics of any finite element.[9]  Properly formulated
elements have a zero valued eigenvalue associated with each rigid body motion.  In
addition, since the displacement based finite element technique overestimates the stiffness
of a body, the smaller the eigenvalues for a particular deformation mode, the more
effective is the element.  Therefore, to provide an initial assessment of the effectiveness of
simplex tetrahedrons compared with bilinear hexahedrons,  the eigenvalues of  equivalent
models were computed.  A regular unit cube volume, with a Young’s Modulus of
30,000,000 and Poisson’s Ratio of .3 was modeled with a single hexahedron and five
tetrahedrons as shown in Figure 1.  Note the configuration shown at the bottom of the
figure 1 shows how the five tetrahedrons are positioned to fill the unit cube.  The internal
tetrahedron’s position results in some directional properties of the stiffness matrix. The
eigenvalues of the hexahedron were computed from (1) the stiffness matrix generated
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Figure 1.  Regular Cube Region modeled with a Single Hexahedron (top) and Five 
Tetrahedrons (bottom)

from Nastran, (2) the stiffness matrix generated from a regular isoparametric 8 noded
hexahedron using gaussian integration.  The eigenvalues for the five tetrahedron condition
were generated from combining the five tetrahedrons into the unit cube. The values of the
computed eigenvalues are given in Table 1 where each value has a factor of 107.

Note that in all cases, the Nastran hexahedron always has the lesser and the 5 tetrahedron
model always has the greater eigenvalue.  The Nastran element is formulated using
reduced or selective integration thus possessing some lower eigenvalues than the
completely integrated isoparametric hexahedron.  Three equivalent mode shapes (i.e.
eigenvectors)  with there associated computed strain energy (i.e. eigenvalues) are shown
in Figure 2.  Note the  somewhat distorted mode shapes associated with the 5 tetrahedron
element.  This distortion is produced by the directional stiffness properties produced by
the internal tetrahedron (see Figure 1).



Table 1.  Stiffness Matrix Eigenvalues of unit cube modeled with  (1) Nastran 
hexahedron, (2) Isoparametric hexahedron, and (3) 5 Simplex tetrahedrons

Eigenvalues Nastran Hex Isopar.  Hex 5 Simplex Tets Eigenvalues Nastran Hex Isopar. Hex 5 Simplex Tets

1 0 0 0 13 3.846 5.769 11.538
2 0 0 0 14 3.846 5.769 11.538
3 0 0 0 15 7.142 7.692 13.134
4 0 0 0 16 7.142 11.538 13.134
5 0 0 0 17 7.142 11.538 13.134
6 0 0 0 18 7.692 11.538 13.916
7 1.667 1.923 5.315 19 11.538 11.538 13.916
8 1.667 1.923 5.315 20 11.538 11.538 19.299
9 1.667 3.526 8.205 21 11.538 11.538 38.276

10 1.923 3.526 8.205 22 11.538 11.538 38.276
11 1.923 3.526 8.205 23 11.538 11.538 38.276
12 3.846 5.769 11.538 24 37.5 37.5 46.085

 11.538  11.538  13.915

 11.538  11.538  13.915

  37.500  37.500  46.085

Nastran Hexahedron     Simplex Hexahedron     5 Tetrahedron

Figure 2.  Eigenvalues and Eigenvectors for three equivalent deformation modes



FINITE ELEMENT MODEL

A simple bar, fixed at one end, with a rectangular cross-section is used to compare the
performance of linear and quadratic displacement assumption tetrahedral and hexahedral
finite elements.  The geometry, boundary conditions, and loading for this model are shown
in Figure 3.  The cases that were run are designated at LH - Linear Hexahedrons, QH -
Quadratic Hexahedrons, LT - Liner Tetrahedrons, and QT - Quadratic Tetrahedrons.  The
finite element models are generated with either a regular 2x2 or 4x4 mesh across the
cross-section of the bar as shown in Figure 3.  Element length in the longitudinal direction
is the same as shown in the cross-section view of Figure 3. The quadratic finite element
model is generated by simply adding midside nodes to the linear model.
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Figure 3.  Basic model used for Static Bending  and Torsional Analysis

STATIC LINEAR ANALYSIS

A cantilever beam with an end load  and a torsion applied to the end of a fixed bar are the
two structural cases used to compare the results of statically loaded all hexahedron and all
tetrahedron meshes. For the bending problem, the analytical magnitudes of the normal
displacement and the bending stress at the reference point, using  classical  beam theory
[10] are  0.000125 and 30.0 respectively.  Both the displacement and bending stress are
independent of Poisson’s ratio.  For the torsional problem, the analytical magnitudes of the
rotational displacement and the shear stress at the reference point were determined using
the solution presented by Timoshenko and Goodier [11].  The shear stress from this
solution is 6.8 and is independent of Poisson’s ratio.  The rotational displacement (i.e. the



translation of the reference point in the direction of twisting) is 0.000003269 for a
Poisson’s ratio of .3, and 0.000003747 for a Poisson’s ratio of .49.  The errors, based on
the above analytical solutions, are computed for the various finite element calculations and
presented in Tables 2 and 3.  Plots of the errors as a function of degrees of freedom in the
finite element model are shown in Figures 4 and 5.  These figures are plotted on log-log
coordinates to more easily display the results over the large range of data.

 TABLE 2.  Error in Displacement and Stress at the Reference Position - Bending Model

Bending  = .3 Displacement Bending  = .3 Stress
DOF LH QH LT QT DOF LH QH LT QT
567 0.72% 567 0.00%
666 31.48% 666 21.23%
1863 0.24% 1863  0.01%
3075 0.08% 3075 0.00%
3615 10.48% 3615 21.00%
3894  0.24% 3894  0.33%

10995 0.01% 10995 0.01%
23613  0.01% 23613  0.01%

Bending  = .49 Displacement Bending  = .49 Stress
DOF LH QH LT QT DOF LH QH LT QT
567 6.56% 567 0.01%
666  71.68% 666 66.77%
1863 5.36% 1863 0.01%
3075 3.20%  3075 0.01%
3615 44.80% 3615 35.23%
3894 4.80% 3894 0.10%

10995 2.88% 10995 0.01%
23613 2.48% 23613 0.23%
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Figure 4.  Log-Log  plots, displacement and stress error  vs. DOF - Bending Calculations



TABLE 3.  Error in Displacement and Stress at the Reference Position - Torsion Model

Bending  = .3 Displacement Bending  = .3 Stress
DOF LH QH LT QT DOF LH QH LT QT
567 15.65% 567 37.59%
666 50.81% 666 77.82%
1863 1.99% 1863  7.97%
3075 5.26% 3075 8.59%
3615 22.39% 3615 38.40%
3894  3.32% 3894  0.07%
10995 0.49% 10995 0.01%
23613  0.76% 23613  0.01%

Bending  = .49 Displacement Bending  = .49 Stress
DOF LH QH LT QT DOF LH QH LT QT
567 26.41% 567 26.41%
666  68.80% 666  68.80%
1863 2.60% 1863 2.60%
3075 5.44%  3075 5.44%  
3615 52.72% 3615 52.72%
3894 4.70% 3894 4.70%
10995 0.75% 10995 0.75%
23613 1.41% 23613 1.41%
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Figure 5.  Log-Log  plots, displacement and stress error vs. DOF - Torsion Calculations

Note that in all cases, the linear tetrahedron element (LT) produces the maximum error.
The performance of the linear hexahedron (LH) is significantly enhanced in the bending
problem because the LH element is formulated using a selective integration technique.[12]
However, the performance of the LH element is still superior to the LT in the torsion
solution when selective integration is not an issue.  The figures clearly demonstrate that
the quadratic elements perform adequately in all cases with the quadratic hexahedron
(QH) showing slightly better performance over the quadratic tetrahedron (QT).  Note the
degradation in all solutions as Poisson’s ratio approaches 0.5.  P refinement characteristics
can also be deduced from Tables 2 and 3 and Figures 4 and 5.  The quadratic models for
both the hexahedron and tetrahedron meshes are generated by simply adding mid-side



nodes to the original linear element model.  For example, by associating the first LH data
point with the first QH data point, LH p refinement convergence is displayed.

DYNAMIC MODAL ANALYSIS

The natural  modes of vibration are compared in this section.  Again the bar shown in
Figure 3 is used with the same meshing models used for the static analysis.  The analytical
solution for the bending mode is given by Hurty and Rubenstien [13] as 317.5 cycles/sec.
An approximate solution for the torsional vibration mode, assuming the stiffness value as
determined from the elasticity solution [ 11], and no warping, is 2614 cycles/sec.

TABLE 4.  Error in Eigenvalues for Bending and Torsional Vibration

Bending  = .3 Frequency Torsion  = .3 Frequency
DOF LH QH LT QT DOF LH QH LT QT
567 0.06% 567 8.86%
666 20.28% 666 41.68%
1863 0.09% 1863  0.98%
3075 0.19% 3075 2.82%
3615 0.28% 3615 0.36%
3894  0.13% 3894  1.64%
10995 0.28% 10995 0.21%
23613  0.28% 23613  0.36%

Bending  = .49 Frequency Torsion  = .49 Frequency
DOF LH QH LT QT DOF LH QH LT QT
567 2.68% 567 8.88%
666  75.12% 666 26.32%
1863 2.08% 1863 1.31%
3075 1.20%  3075 2.82%
3615 23.87% 3615 29.76%
3894 1.83% 3894 2.41%
10995 1.04% 10995 0.35%
23613 0.85% 23613 0.69%
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Figure 6.  Log-Log  plots, displacement and stress error vs. DOF - Bending Calculations



Comparison of the results in Table 4 and Figure 6 lead to the same conclusions as before.
The linear tetrahedron  performs poorly in all cases.  The quadratic elements are adequate
with a slight advantage given to the hexagonal mesh.

STATIC NONLINEAR ELASTO-PLASTIC ANALYSIS

In this section a comparison of all hexahedral and all tetrahedral meshes is made for static
nonlinear, elasto-plastic calculations.  Only material nonlinearity is investigated.  Again a
bending and torsion cases, as shown in Figure 3, are evaluated.  The nonlinear behavior of
the material is assumed to be elastic perfectly plastic with Young’s Modulus of
10,000,000., Poisson’s Ratio of .3, and Yield Stress of 10,000.  A nonlinear analysis is
much more difficult to compute than a linear analysis and comparison of results is
dependent not only on element discritization but nonlinear solution techniques.  A
complete discussion on the process of solving nonlinear elastio-plastic problems is given in
Reference 9.

The analytical bending solution used for the comparison basis is depicted in Figure 7.
Here the beam is loaded elasticity until incipient plasticity, at the upper and lower surfaces
of the supported end, is attained.  The load is then increased incrementally and the plastic
region continues to grow and propagate. The nonlinear convergence criteria was set to
.1%  on the strain energy norm. The displacement of the loaded tip of the beam and the
distance, D, (i.e. the distance to the incipient yield front on surface of the beam), are
quantities used for comparison between all hexahedral and all tetrahedral meshes.

.

Elasto-Plastic Solution:
   Young’s Modulus = 10,000,000
    Poisson’s Ratio = .3, .49
    Yield Stress = 10,000
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Figure 7.  Elasto-Plastic Bending Solution



Table 5 and Figure 8 show the results of the calculations of the nonlinear bending
comparison problem.  Note that the results compare very favorably for all calculations
except for the 2x2 and 4x4 linear tetrahedron models. The D values had similar accuracy
as the displacement values shown in Table % and Figure 8.  The D values, in all cases
except for the 2x2 and 4x4 linear tetrahedron models, compared almost exactly with the
analytical solution.  The linear tetrahedron models did not even manifest any plasticity
except for the last two loading steps on the 4x4 mesh.  Thus the D values were either 0 or
very small.

TABLE 5.  Tip Displacement from nonlinear calculations

Tip Displacement
Step 0 1 2 3 4 5
Load, 4xF 0 160 185.2 196.08 208.3 238
2x2 LH 0 0.0638 0.0739 0.0782 0.0831 0.1020
2x2 QH 0 0.0641 0.0742 0.0786 0.0845 0.1040
4x4 LH 0 0.0642 0.0743 0.0787 0.0847 0.1040
4x4 QH 0
2x2 LT 0 0.0407 0.0471 0.0499 0.0530 0.0606
2x2 QT 0 0.0641 0.0741 0.0785 0.0837 0.1020
4x4 LT 0 0.0569 0.0658 0.0697 0.0744 0.0875
4x4 QT 0 0.0640 0.0740 0.0786 0.0848 0.1020
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Figure 8.  Tip Displacements as a function of applied loads - nonlinear bending example



The analytical work used for the comparison  basis for the torsion problem is a finite
difference solution given by Mendleson. [14]  Here, as in the elastic comparison, the
translation of the reference point in the direction of twisting is the result used for
comparison. Table 6 and Figure 9 show the results of the calculations of the nonlinear
torsion comparison problem.

TABLE 6.  Mid-point displacements  from nonlinear calculations

Mid-point Displacement
Step 1 2 3 4
Applied Torque 0 1201 1717 1844 1880
2x2 LH 0 0.00468 0.0067 0.00795 0.0083
2x2 QH 0 0.00547 0.00914 0.0108 0.0117
4x4 LH 0 0.00527 0.0083 0.01 0.0107
4x4 QH 0
2x2 LT 0 0.00272 0.0039 0.00419 0.00427
2x2 QT 0 0.00537 0.00769 0.00825 0.00841
4x4 LT 0 0.00425 0.00609 0.00654 0.00667
4x4 QT 0 0.00553 0.00791 0.0085 0.00866
Ref 14 0 0.00555 0.01055 0.01305 0.01555
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Figure 9.  Mid point displacements as a function of applied torque - nonlinear torsion

Similar to the elastic calculations, the nonlinear torsion problem manifests significantly
more error than does the bending problem.  This problem has a significant region of plastic



flow within the continuum volume, thus requires much more nonlinear iterative
calculations than were required in the bending solution.  In fact, the calculations would not
converge using the .1% strain energy norm that was used for the bending problem. To
allow for convergence, the nonlinear convergence criteria had to be weakened to a 5%
displacement norm in all cases except for the 2x2 LH model.  This criteria may not be a
tight enough to provide an acceptably accurate solution.  Note the sharper bend in the 2x2
LH model on the final step that results from using the tighter convergence criteria.

Note the significantly greater accuracy that comes from the hexagonal models when
compared to the tetrahedral models.  Again, similar to the bending calculations, the LH
models did not even initiate any plasticity even at the maximum loading.

CONCLUSIONS

Numerous calculations have been conducted in this paper that compare the accuracy of  all
tetrahedral meshes to all hexahedral meshes.  First it was shown that the stiffness matrix
eigenvalues for linear tetrahedrons were generally larger that those for linear hexahedrons.
This fact demonstrates that linear hexahedrons can generally deform in a lower strain
energy state, thus making them more accurate than linear tetrahedrons in numerous
situations.  The eigenvalue analysis was not conducted for quadratic elements.

The comparison of linear static bending situation indicated that LT models produced
errors between 10 to 70 percent in both displacement and stress calculations.  Such errors
are obviously unacceptable for stress analysis work.  However LH, QH, and QT models
all provided acceptable results, even with relatively coarse meshes.  In all cases, the error
was significantly greater with a nearly incompressible material model (i.e.  = .49).

The linear static torsion problem again showed that the LT element produced errors of an
unacceptable magnitude.  This problem also demonstrated that, because selective
integration is only effective on the bending problem, the LH element, without a significant
number of degrees of freedom, produces poor results.  Here, as in the previous problem,
the QH element is superior.

Dynamic modal analysis comparisons reflected the results of the previous two
comparisons.  That is, LT models produce more error that in acceptable and QH models
are generally preferred to insure accuracy with both torsion and nearly incompressible
materials.

Significant information is conspicuous in the nonlinear elasto-plastic calculations.  Here, as
before, all but LT models are adequate for bending calculations.  However, not only LT,
but QT models seemed to underperform both LH and QH elements.  More study is
required to determine why QT elements appear to underperform LH elements in
significant plastic flow calculations.
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